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INTRODUCTION

The order Siluriformes, known as catfishes, consti-

tutes an exceptionally diverse and speciose natural

group of primarily freshwater ray-finned fishes (Nel-

son, 1994). Currently, 36 families and over 3000 spe-

cies are recognized (Ferraris, 2007) rendering cat-

fishes among the most diverse vertebrate orders (ap-

proximately 1 in 10 actinopterygians or 1 in 20 verte-

brates is a catfish). Morphological (Fink & Fink, 1981)

as well as molecular data (Saitoh et al., 2003; Sullivan

et al., 2006) clearly support the monophyly of Siluri-

formes and place the main burst of their diversifica-

tion at the late Cretaceous-early Tertiary boundary

(Hardman, 2005). Despite the diversity of catfishes,

interfamilial relationships still remain controversial

and not fully resolved. Phylogenetic investigations

have been stymied by the relative lack of dense sam-

pling for certain mitochondrial and nuclear sequence

data. For example, complete mitochondrial genomes

have been determined for only six siluriform species,

namely Pseudobagrus tokiensis (Saitoh et al., 2003),

Corydoras rabauti (Saitoh et al., 2003), Ictalurus punc-
tatus (Waldbieser et al., 2003), Cranoglanis bouderius
(Peng et al., 2006), Pangasianodon gigas (Jondeung et
al., 2007), and Liobagrus obesus (Kartavtsev et al.,
2007).

The European catfish Silurus glanis (Siluridae) is

the second largest freshwater fish in Europe after the

European sturgeon (Kottelat & Freyhof, 2007). Its

natural distribution extends from the Aral Sea basin

to the Danube and Vistula River basins, and south-

ward to Greece and western Anatolia (Banarescu,

1989). The wels catfish (S. glanis) is of considerable

commercial importance, particularly for central and

eastern European countries, due to several characte-

ristics that make it desirable for profitable aquacul-

ture (Legendre et al., 1996; Proteau et al., 1996; Smi-

therman et al., 1996; Brzuska & Adamek, 1999). Few

studies exist on the genetic variability and phylogeo-

graphy of S. glanis populations (Krieg et al., 1999;

Triantafyllidis et al., 1999a, b, 2002). Throughout the
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native range of the species, the high levels of interpo-

pulation differentiation reported do not seem to be

geographically patterned. Results based on mito-

chondrial DNA data have identified the Ponto-Caspi-

an region as the most genetically diverse. This has

been interpreted as an indication that this region was

the single S. glanis late Pleistocene refuge and the

main source of postglacial colonization of European

lineages (Krieg et al., 1999; Triantafyllidis et al., 2002).

Considering the commercial importance of S. glanis
and the presence of several transplanted strains in

northern and western Europe, additional data are im-

peratively needed. The development of novel molec-

ular markers is expected to provide new insights into

the genealogical history of S. glanis and the suspected

ecological impacts of introductions as well as to con-

tribute to genetic management and conservation ef-

forts. In this vein, the mitochondrial DNA genome is

an indispensable source of information.

Animal mitochondrial DNA (mtDNA) is a double-

stranded circular DNA molecule, ranging in length

from 16 to 20 kb (Avise et al., 1987). It generally con-

sists of intronless genes, few, if any, intergenic spacers,

and one non-coding region of approximately 1 kb, the

control region (Displacement loop: D-loop) which

contains a number of important features regulating

mtDNA replication and transcription (Clayton, 1982,

1991; Fernandez-Silva et al., 2003). All the mtDNA

encoded polypeptides are functionally essential since

they are components of the mitochondrial energy-ge-

nerating pathway involved in oxidative phosphoryla-

tion. Furthermore, the almost exclusive maternal in-

heritance, the lack of recombination in general, and

the high substitution rate make this molecule very at-

tractive for phylogenetic studies (Nei, 1987; Pissios &

Scouras, 1993; Nikolaidis & Scouras, 1996; Peng et
al., 2006).

Up to date, higher-level phylogenetic analyses in

Siluriformes have used either single mtDNA genes or

concatenated protein-coding gene sequences, with

variable taxonomic coverage (Saitoh et al., 2003; Wald-

bieser et al., 2003; Hardman, 2005; Peng et al., 2006;

Jondeung et al., 2007; Kartavtsev et al., 2007). The

most extended study so far has been that of Hardman

(2005) who used cytochrome b sequence data to in-

vestigate phylogenetic relationships among 170 silu-

riform species from 29 extant families and also ex-

plore the puzzling genealogical connections between

North American ictalurids and Southeast Asian rela-

tives.

In the present study, we report the complete mi-

tochondrial genome of S. glanis, the first of the fami-

ly Siluridae. Using all available siluriform complete

mitogenomes, we additionally explore the evolution-

ary relationships of S. glanis to its relatives and iden-

tify certain lineage relationships critical in the global

diversification of catfishes.

MATERIALS AND METHODS

Genomic and mitochondrial DNA extraction

The nomenclature in this paper follows that of Fish-

Base (www.fishbase.org). One S. glanis individual was

collected from Kastoria Lake in northern Greece and

was used for both mitochondrial and genomic DNA

extraction. Mitochondrial DNA was extracted from

liver tissue using the extraction protocol described in

Arnason et al. (1991), while genomic DNA was ex-

tracted from alcohol-fixed muscle tissue using the Nu-

cleoSpin Tissue kit protocol (Macherey-Nagel).

Direct and PCR cloning and sequencing of mtDNA

In order to obtain the complete mtDNA sequence of

S. glanis, direct and PCR cloning were performed. A

2385-bp HincII mtDNA fragment was cloned into a

pGEM T-Easy Vector following the manufacturer’s

recommended protocol (Promega). The rest of the

molecule was PCR-amplified using homologous and

heterologous (based on closely related species) sets

of primers (Table 1, Fig. 1) and cloned in either a

pGEM T-Easy Vector (Promega) or a pDrive vector

system (QIAGEN) following conditions recommend-

ed by each manufacturer. PCR amplifications were

generally performed using cycling conditions report-

ed by Kartavtsev et al. (2007). Purification of all PCR

products was performed either with the QIAquick

PCR purification kit or the QIAquick Gel Extraction

kit (QIAGEN). Plasmid DNA isolation was perform-

ed using the NucleoSpin“ Plasmid kit (Macherey-Na-

gel). Double-stranded sequencing was performed by

an automatic sequencer (Lark Technologies, Essex or

Macrogen, Seoul).

The complete mitochondrial genome of S. glanis was

deposited in GenBank (accession number: AM398435).

Sequence analysis

All obtained sequences were initially subjected to

BLAST (Altschul et al., 1990) searches for verifica-

tion of homology. Protein-coding genes, rRNAs, and

tRNAs were identified by comparison with the corre-

sponding known sequences of six other catfish species
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TABLE 1. Sequences of primers used in the present study. Primers marked with * were designed using the sequences of six

Siluriformes species (GenBank acc. nos: AB054127, AB054128, AF482987, AY898626, DQ321752, AY762971). Primers

marked with ¨ were designed using S. glanis sequences (AJ969127, AM113592). All other primers were designed using S. glanis
sequences retrieved from this study

Primer name Sequence 5′-3′

ATP6F (1F) CTG CCA TAT ACC TTC ACA CCT ACA ACA CAG C

Cytb92R¨ (1R) ATT ATG AGA CAT AGT AGG AGG AGG GAG CCA AAG

DloopF¨ (2F) AGC GAG TCC TAA TTA ATC CTG TCA AAC CCC

COXI473R (2R) GTT TGT GGT AGT TAG TTC AAC GGA GAG CAC TTC

Cytb442F¨ (3F) TAT TAT CCG CCG TTC CCT ACA TAG GAG ATG

16SR* (3R) GCA TTA CAG ATA GAA ACT GAC CTG GAT TGC

16SF* (4F) AAT GAA GAC CTG TAT GAA TGG TGG AAC GAG G

COXI203R (4R) TAA AAA GGG GGA ATC AGT GAA CGA AAG CTC C

COXIIINF (5F) CTG ATA GAA GGG GAA CGC AAA C

ND4R* (5R) CCT CAT GGG GTT TGA ATT AAG ATT CC

ND4F (6F) TAC TCG CTG GGG CAA TCA AGC

CytGluR (6R) GGG TGG GTT TTT CGG GTT AC

FIG. 1. Silurus glanis mitochondrial genome. Genes for proteins and rRNAs are shown with standard abbreviations. Genes

for tRNAs are designated by a single letter for the corresponding amino acid. Genes shown at the outer circle are encoded

by the H-strand while those at the inner circle are encoded by the L-strand. The arrows represent the primers used for

mtDNA amplification (see also Tables 1 and 3).



(Liobagrus obesus, Ictalurus punctatus, Pangasianodon
gigas, Corydoras rabauti, Pseudobagrus tokiensis, Cra-
noglanis bouderius) (Table 2) through alignments with

ClustalX 1.8 (Thompson et al., 1997). Furthermore,

the 13 mitochondrial protein-coding genes were de-

fined by the presence of initiation and stop codons

whereas the 22 tRNAs were identified by their ten-

dency to fold into cloverleaf secondary structures

(Zuker et al., 1999) and by the presence of specific

anticodons. Codon usage was determined using the

Sequence Manipulation Suite (SMS2) (www.bioinfor-

matics.org/sms2/) while nucleotide frequency at each

codon position was determined using the MEGA 4.0

package (Kumar et al., 2008).

Phylogenetic analysis

The complete mtDNA dataset consisted of all six a-

vailable mitochondrial genomes of Siluriformes, the

mitochondrial genome of S. glanis reported in this

study, and two outgroup taxa (Salmo salar, Clupea
pallasii) (see Table 2). The METAMiGA database

(METAzoan Mitochondrial Genomes Accessible

database, http://amiga.cbmeg.unicamp.br/) was used to as-

semble the mtDNA dataset. The ND6 gene was ex-

cluded from the analysis due to its consistent translo-

cation on the L-strand. Nucleotide sequences of indi-

vidual protein-coding genes were retrieved and group-

ed in 12 separate files. Sequences were aligned using

the RevTrans 1.4 server from DTUCBS (Wernersson

& Pedersen, 2003) and subsequently concatenated to

produce a final alignment of 10932 nucleotide and

3631 amino acid positions. Phylogenetic analysis was

performed on both nucleotide and amino acid align-

ments under Bayesian inference (BI) in MrBayes 3.1

(Huelsenbeck & Ronquist, 2001) as well as under par-

simony (MP) and likelihood (ML) methods in PAUP*

4.0b10 (Swofford, 1998).

For BI, the best-fit nucleotide substitution model

employed was the general time reversible model

GTR+I+° (Tavare, 1986) as determined by Model-

test 3.7 (Posada & Crandall, 1998). Two independent,

simultaneous analyses were run for 2 × 106 genera-

tions, each starting from different random trees with

four chains (one cold and three incrementally heat-

ed) and sampling every 200 generations. We used the

AWTY software (Nylander et al., 2008) to graphical-

ly check convergence of the Markov chain Monte

Carlo by monitoring cumulative posterior split prob-

abilities and between-run variability of split frequen-

cies. Stationarity was confirmed after 2500 sampled

generations which were discarded as “burn-in”. A

majority-rule consensus topology was created with

the remaining samples, pooled together from the in-

dependent runs. The frequencies of each node of the

consensus tree were represented as posterior proba-

bilities.

For MP, trees were generated using heuristic sear-

ches with TBR (tree-bisection-reconnection) branch

swapping and 500 random taxon additions. Nodal

support was assessed with 1000 bootstrap replicates.

For ML, the best-fit substitution model, determined

previously, was employed in a heuristic search with

TBR branch swapping and 100 bootstrap replicates.

Phylogenetic analysis was also performed on the cor-

responding amino acid dataset using MrBayes 3.1

(Huelsenbeck & Ronquist, 2001). We used ProtTest

2.4 (Abascal et al., 2005) and selected mtREV (Ada-
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TABLE 2. Species information of complete mtDNA sequences used in phylogenetic analysis

Species mtDNA length 
Family

GenBank
Reference

(bp) accession number

Pseudobagrus tokiensis 16529 Bagridae AB054127 Saitoh et al. (2003)

Corydoras rabauti 16831 Callichthyidae AB054128 Saitoh et al. (2003)

Ictalurus punctatus 16497 Ictaluridae AF482987 Waldbieser et al. (2003)

Cranoglanis bouderius 16539 Cranoglanididae AY898626 Peng et al. (2006)

Pangasianodon gigas 16533 Pangasiidae AY762971 Jondeung et al. (2007)

Liobagrus obesus 16531 Amblycipitidae DQ321752 Kartavtsev et al. (2007)

Silurus glanis 16526 Siluridae AM398435 this study

Outgroups

Salmo salar 16665 Salmonidae U12143 Hurst et al. (1999)

Clupea pallasii 16700 Clupeidae AP009134 Lavoué et al. (2007)



chi & Hasegawa, 1996) as the best-fit amino acid sub-

stitution model. Parameter settings during Bayesian

inference were as previously described.

Prior to phylogeny reconstruction, we tested for

homogeneity of base frequencies using the ¯2 hetero-

geneity test implemented in PAUP* 4.0b10 (Swof-

ford, 1998). We also inspected for substitution satu-

ration by plotting transitions / transversions to cor-

rected sequence divergence using DAMBE 5.0 (Xia

& Xie, 2001).

RESULTS AND DISCUSSION

The complete nucleotide sequence of the European

catfish S. glanis mtDNA was obtained and deposited

in GenBank (acc. no. AM398435). The total length of

the L-strand is 16526 bases with an overall base com-

position of A: 30.2%, C: 28.8%, G: 16.1%, and T:

24.9%. The S. glanis mitochondrial gene order is i-

dentical to that of other fishes (Miya et al., 2003) and

higher vertebrates (Boore, 1999). The mtDNA mole-

cule consists of two rRNAs (12S and 16S rRNA), 22

tRNAs, 13 protein-coding genes, and a major non-

coding sequence, the control region (Fig. 1, Table 3).

Sequence homology between S. glanis and the six a-

vailable siluriform mtDNAs (I. punctatus, C. rabauti,
P. tokiensis, P. gigas, C. bouderius, and L. obesus) ap-

pears to be relatively high, ranging from 72 to 89%

for the protein-coding genes, from 84 to 90% for the

rRNA genes, and from 63 to 71% for the control re-

gion.

Ribosomal and transfer RNA genes

The S. glanis 12S and 16S rRNA genes consist of 954

(positions: 71-1024) and 1679 (positions: 1097-2775)

nucleotides, respectively (Table 3). As in other verte-

brates (Inoue et al., 2000; Broughton et al., 2001),

these genes are located between those for tRNAPhe and

tRNALeu (UUR) and are separated by the tRNAVal

gene. The S. glanis mitochondrial genome contains 22

tRNAs (14 encoded by the H-strand and 8 by the L-

strand) which are dispersed along the genome, range

in size from 66 to 75 nucleotides (Table 3), and are

predicted to fold into the expected cloverleaf sec-

ondary structure (data not shown). The tRNAIle and

tRNAGln genes as well as the tRNAGln and tRNAMet

genes overlap by one nucleotide each. This is quite

common in other fish mitochondrial genomes, differ-

ing, however, in the number of the overlapping nucle-

otides (Lee et al., 2001).

Protein-coding genes

All protein-coding genes generally found in other

vertebrate mtDNAs are also present in S. glanis mito-

chondrial genome with the same arrangement. They

are all encoded by the H-strand, with the exception of

the ND6 gene encoded by the L-strand (Table 3). Re-

stricted overlapping is observed among some of the

13 protein-coding genes (Table 3). In particular, the

ATP8 and ATP6 genes share ten nucleotides, as in

birds and other fishes, the ATP6 and COIII genes

overlap by one nucleotide, as in other teleosts, the

ND4L and ND4 genes overlap by seven nucleotides,

as in all other chordates, and the ND5 and ND6 ge-

nes have an overlap of four nucleotides, as in most

vertebrates (4-17 nucleotides) (Broughton et al., 2001;

Peng et al., 2006).

All protein-coding genes use ATG as a start co-

don except COI that uses GTG. Six protein-coding

genes end with TAA and three with TAG. The COII,

COIII, ND4, and Cytb genes do not possess proper

stop codons but do show a terminal T (Table 3) which

likely is completed by post-transcriptional polyadeny-

lation (Ojala et al., 1981). This is quite common and

typical among mtDNA genes of other fishes (Lee et
al., 2001; Kim et al., 2004; Nagase et al., 2005).

The nucleotide frequencies for every codon posi-

tion (Table 4) in all 13 protein-coding genes of S. gla-
nis mtDNA reveal no bias at the 1st codon position.

Bias against A and G and towards T is detected at the

2nd position. Similarly, a strong bias towards A and C

and against G at the 3rd codon position, typical in ver-

tebrates (Broughton et al., 2001), is also evident in S.
glanis. The strong bias towards A and C at the 3rd co-

don position is probably due to the fact that the 22

tRNAs encoded by the mtDNA are specific for co-

dons which have A or C at the 3rd position (Table 3)

(Broughton et al., 2001).

Regarding codon usage (Table 5), a strong bias

towards A and C at the 3rd position is observed in all

codons except for isoleucine, something similar to the

mtDNA of the channel catfish I. punctatus (Waldbie-

ser et al., 2003). Regarding amino acids with fourfold

degenerate third positions, the A-ending codons are

not the most frequent in all cases, in contrast to the

general pattern observed in other vertebrates (Brough-

ton et al., 2001). In addition, codons for which the an-

ticodons are present in the mitochondrial tRNA ge-

nes are generally preferred (Table 3).
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TABLE 3. Organization of the S. glanis mitochondrial genome 

Gene/Element Abbreviation Strand Position Size Start Stop Codon Amino

(bp) codon codon recognized acids

tRNAPhe F H 1-70 70 TTC

12S ribosomal RNA 12S H 71-1024 954

tRNAVal V H 1025-1096 72 GTA

16S ribosomal RNA 16S H 1097-2775 1679

tRNALeu (UUR) L H 2776-2850 75 TTA

NADH dehydrogenase subunit 1 ND1 H 2851-3825 975 ATG TAA 324

tRNAIle I H 3827-3898 72 ATC

tRNAGln Q L 3898-3968 71 CAA

tRNAMet M H 3968-4036 69 ATG

NADH dehydrogenase subunit 2 ND2 H 4037-5083 1047 ATG TAG 348

tRNATrp W H 5082-5152 71 TGA

tRNAAla A L 5155-5223 69 GCA

tRNAAsn N L 5225-5297 73 AAC

tRNACys C L 5332-5397 66 TGC

tRNATyr Y L 5401-5470 70 TAC

Cytochrome c oxidase subunit 1 COI H 5472-7022 1551 GTG TAA 516

tRNASer (UCN) S L 7023-7093 71 TCA

tRNAAsp D H 7098-7169 72 GAC

Cytochrome c oxidase subunit 2 COII H 7184-7874 691 ATG T-* 230

tRNALys K H 7875-7948 74 AAA

ATP synthase F0 subunit 8 ATP8 H 7950-8117 168 ATG TAA 55

ATP synthase F0 subunit 6 ATP6 H 8108-8791 684 ATG TAA 227

Cytochrome c oxidase subunit 3 COIII H 8791-9574 784 ATG T-* 261

tRNAGly G H 9575-9647 73 GGA

NADH dehydrogenase subunit 3 ND3 H 9648-9998 351 ATG TAG 116

tRNAArg R H 9997-10067 71 CGA

NADH dehydrogenase subunit 4L ND4L H 10068-10364 297 ATG TAA 98

NADH dehydrogenase subunit 4 ND4 H 10358-11738 1381 ATG T-* 460

tRNAHis H H 11739-11808 70 CAC

tRNASer (AGY) S H 11809-11874 66 AGC

tRNALeu (CUN) L H 11878-11950 73 CTA

NADH dehydrogenase subunit 5 ND5 H 11951-13777 1827 ATG TAA 608

NADH dehydrogenase subunit 6 ND6 L 13774-14292 519 ATG TAG 172

tRNAGlu E L 14293-14361 69 GAA

Cytochrome b Cytb H 14363-15500 1138 ATG T-* 379

tRNAThr T H 15501-15571 71 ACA

tRNAPro P L 15570-15639 70 CCA

Displacement loop (control region)D-loop — 15640-16526 887

* TAA stop codon is completed by the addition of 3′A residues to mRNA

TABLE 4. Nucleotide frequencies (%) by codon position over all mitochondrial protein-coding genes of S. glanis

T C A G

1st position 21.4 26.2 26.6 25.8

2nd position 40.5 27.3 18.8 13.4

3rd position 18.5 34.6 38.0 8.9

Total 26.8 29.3 27.8 16.1
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TABLE 5. Codon usage in S. glanis mitochondrial protein-coding genes 

Amino acid Codon Number Frequency Codon usage (%)

Ala GCG 15 0.004 4.5
GCA 116 0.030 34
GCU 52 0.014 15.5
GCC 154 0.040 46

Cys UGU 10 0.003 31
UGC 22 0.006 69

Asp GAU 20 0.005 26
GAC 57 0.015 74

Glu GAG 18 0.005 18
GAA 82 0.022 82

Phe UUU 90 0.024 41
UUC 130 0.034 59

Gly GGG 50 0.013 21
GGA 87 0.023 36
GGU 18 0.005 7
GGC 86 0.023 36

His CAU 27 0.007 24
CAC 84 0.022 76

Ile AUU 160 0.042 57
AUC 121 0.032 43

Lys AAG 6 0.002 7
AAA 75 0.020 93

Leu (UUR) UUG 27 0.007 19
UUA 116 0.030 81

Leu (CUN) CUG 55 0.014 11
CUA 252 0.066 51
CUU 80 0.021 16
CUC 109 0.029 22

Met AUG 62 0.016 36
AUA 112 0.029 64

Asn AAU 39 0.010 32
AAC 84 0.022 68

Pro CCG 10 0.003 5
CCA 80 0.021 37
CCU 28 0.007 13
CCC 97 0.025 45

Gln CAG 16 0.004 16
CAA 85 0.022 84

Arg CGG 10 0.003 14
CGA 39 0.010 53
CGU 10 0.003 14
CGC 14 0.004 19

Ser (AGY) AGU 9 0.002 19
AGC 38 0.010 81

Ser (UCN) UCG 5 0.001 3
UCA 70 0.018 38.5
UCU 29 0.008 16
UCC 77 0.020 42.5

Thr ACG 12 0.003 4
ACA 137 0.036 45
ACU 45 0.012 14.5
ACC 112 0.029 36.5

Val GUG 29 0.008 13
GUA 91 0.024 40
GUU 49 0.013 21.5
GUC 58 0.015 25.5

Trp UGG 22 0.006 19
UGA 95 0.025 81

Tyr UAU 38 0.010 34
UAC 73 0.019 66

Stop AGG 0 0.000 0
AGA 0 0.000 0
UAG 3 0.001 23
UAA 10 0.003 77



Non-coding regions and D-loop

The non-coding regions of vertebrate mtDNAs are

restricted to few spacers between tRNA genes, the

origin of light strand replication (OL), and the control

region that regulates replication and transcription

(Clayton, 1982, 1991; Shadel & Clayton, 1993, 1997).

In the S. glanis mitochondrial genome several short

spacers (1-4 nucleotides long) between tRNA genes

were identified, along with few spacers (1-14 nucleo-

tides long) between tRNA and protein-coding genes

(Table 3). The origin of light strand replication (OL)

was identified as a 37-bp sequence motif (5′-CTT

TCC CCG CCT GTT CGT CGA ATA AAG GCG

GGG AAA G-3′) inside a cluster of five tRNA genes

(WANCY region) located between the tRNAAsn and

tRNACys genes (sharing a 3-bp overlap with the latter,

positions: 5298-5331, Table 3). This region has the

potential to form a stable stem-loop structure, consi-

sting of 24 bp in the stem region and 13 bp in the loop

region which is common and crucial for the light

strand replication of vertebrate mtDNA (Shadel &

Clayton, 1997).

The length of the S. glanis control region is 887 bp

(positions: 15640-16526, Table 3), located between

the tRNAPro and tRNAPhe genes. Its size is similar to

that of most Siluriformes (Waldbieser et al., 2003;

Peng et al., 2006; Jondeung et al., 2007) and compa-

rable to the control regions of other teleosts (Lee et
al., 1995). Several conserved sequence blocks present

in most vertebrates (Walberg & Clayton, 1981; Sbisa

et al., 1997) were also identified in S. glanis control re-

gion and are presented in Table 6.

Phylogenetic inference

The mtDNA dataset (12 protein-coding genes) con-

sisted of 10932 nucleotide positions of which 3512

were parsimony informative and 5103 were variable.

Significant heterogeneity in base frequencies was

found (¯2=250.99, df=24, p<0.01) while substitu-

tion saturation was only evident at third-codon posi-

tions. The reconstructed topologies applying BI, MP,

and ML methods were overall congruent and robust.

All groupings were faithfully retained except for the

position of I. punctatus. The inferred BI phylogeny is

shown in Figure 2. The lineage leading to S. glanis
(Siluridae) branches off the clade consisting of L. o-
besus (Amblycipitidae), P. tokiensis (Bagridae), I.
punctatus (Ictaluridae), C. bouderius (Cranoglanidi-

dae), and P. gigas (Pangasiidae). The specific position

of S. glanis is particularly stable and is also recovered

during MP and ML analyses (data not shown). Given

the limited taxon coverage of the mitogenome data-

set, our analysis provides further support for the like-

ly position of the family Siluridae at the early stages

of diversification of the order (see also Peng et al.,
2006; Jondeung et al., 2007; Kartavtsev et al., 2007).

Interestingly, the branching order of I. punctatus
seems to be somewhat variable across analyses. In BI

and ML, I. punctatus comes out as equally related to

C. bouderius and the Mekong giant catfish P. gigas
while in MP it is recovered as a sister species to C.
bouderius. In a previous investigation based on parsi-

mony and Bayesian analyses of cytochrome b se-

quences (Hardman, 2005), C. bouderius was recover-

ed as a sister taxon to Ictaluridae. On the other hand,

Ictaluridae and Pangasiidae were inferred as closest

relatives during an analysis of 60 catfish species based

on 16S rRNA data (Kartavtsev et al., 2007). However,

Cranoglanididae had not been sampled in that study.

Considering the enigmatic relationship of North A-

merican ictalurid catfishes to other catfish families,

the current mitogenome analysis upholds previous re-

sults showing that North American freshwaters were

invaded by the ancestor of Ictaluridae in the late Cre-

taceous through a Northeastern Asia-Northwestern

North America connection (Hardman, 2005). Fur-

thermore, our results strongly highlight C. bouderius
and P. gigas as the most likely extant close relatives of

the Ictaluridae. The corresponding amino acid tree

(data not shown) was also identical and similarly ro-

bust to the Bayesian topology, providing further evi-

dence that the ictalurid sister taxa may have been

safely demarcated. However, more mitogenome se-
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TABLE 6. Control region conserved boxes (Siluriformes)

and their positions in S. glanis mitochondrial DNA

Conserved Position in S. glanis

box control region

TAS-1 15683-15698

TAS-2 15717-15732

TAS-3 15736-15750

ETAS 15683-15750

CSB-F 15936-15956

CSB-E 15997-16015

CSB-D 16030-16057

CSB-C 16089-16113

CSB-B 16162-16184

CSB-1 16267-16285

CSB-2 16387-16404

CSB-3 16430-16449

OH-like 16127-16139



quences are needed in order to confidently ascertain

this conclusion.

CONCLUSIONS

The mitochondrial genome of S. glanis is reported,

the first of the family Siluridae. It has a length of

16526 bp, bearing no introns and few intergenic spac-

ers. It codes for 13 polypeptides (subunits of the res-

piratory chain enzyme complexes), 22 tRNAs, and 2

rRNAs, as in most vertebrates. The S. glanis major

non-coding region (control region) is found to be 887

bp long, a size comparable to that of other teleosts.

Phylogenetic analysis of all available siluriform mi-

togenomes, and in conjunction with other data, re-

veals an early split of S. glanis and identifies candi-

date lineages in the intensive search for the extant ic-

talurid sister taxon. Future addition of more mito-

chondrial genomes from this order will assist to a bet-

ter understanding of the phylogenetic relationships

and biogeographic history of catfish families which

still remain controversial.
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