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INTRODUCTION

Remarkable advances in whole genome sequencing

and high-throughput experimental technologies en-

able the scientific community to obtain the full know-

ledge of interactions among cellular components

(Reed et al., 2006). These interactions were general-

ly represented by networks (Aittokallio & Schwikow-

ski, 2006), in which the nodes (e.g. metabolites) are

linked by arcs or edges (metabolic reactions accord-

ingly). Because detailed kinetic parameters are hard-

ly available, lots of recent studies have focused on

structural and functional analysis of these networks.

The results so far suggested that these structural-ori-

ented methods had been invaluable in understanding

cellular organizational principles and proposing new

hypotheses (Aittokallio & Schwikowski, 2006; Pals-

son, 2006; Chaouiya, 2007; Ding & Li, 2009; Ding et
al., 2009). Since Ma and Zeng proposed the “bow

tie” structure of metabolic networks, it is increasing-

ly recognized that this structural property is functio-

nally meaningful for metabolism, disease and the de-

sign principle of biological robustness (Ma & Zeng,

2003a). Generally speaking, a network with the “bow

tie” structure could be decomposed into four parts:

Giant Strong Component (GSC), Substrate Subset

(S), Product Subset (P) and Isolated Subset (IS). The

GSC is the biggest strongly connected component of

a metabolic network, it determines the structure of

the entire network at a certain extent, and thus is con-

sidered as the metabolic network core (Zhao et al.,
2007). In the late 1990s, Watts & Strogatz investigat-

ed the average path length of real networks and in-

troduced the so-called “small-world” networks, i.e.,

natural complex networks with very small average

path lengths (Watts & Strogatz, 1998). Later, “scale-

free” network theory was introduced (Barabási &

Oltvai, 2004) for natural complex networks with pow-

er-law node degree distributions (i.e., the degree dis-

tribution P(k) of the nodes follows the function P(k)

=ak–r, a>0, r>0). These two general network prop-

erties (and their slight but exquisite variants) have la-

tely attracted much attention. Recent experimental
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and theoretical studies have shown that most biolog-

ical networks (such as metabolic networks, protein-

protein interaction networks, transcriptional regula-

tory networks, signal transduction networks, etc.) dis-

played “scale-free” and “small-world” characters (Ma

& Zeng, 2003a, b; Barabási & Oltvai, 2004; Albert,

2005; Aittokallio & Schwikowski, 2006).

In this article, we firstly edited the human meta-

bolic network core from a recently reconstructed

high-quality human metabolic network. The resulted

network contains 256 vertices and 648 arcs. We then

analyzed its global structural properties. Finally, the

structure of the metabolic network core is explained

and discussed based on modularity and centrality a-

nalysis, focusing on their biological and pharmacolo-

gical significance.

We used modularity analysis because 1) the meta-

bolic networks are often so large that combinatorial

explosion of pathways makes it difficult to apply tra-

ditional pathway analysis methods to the whole net-

works, and 2) we need to identify functional modules

to discover functional information involved in meta-

bolic networks. 

Since it has been proposed, modularity analysis is

specifically useful, among other structural analysis

methods, for the structural and functional analysis of

metabolic networks. Modularity analysis is also used

for the analysis of other complex networks, such as

social networks, Internet, World Wide Web, etc. (Gui-

merà & Amaral, 2005; Gulbahce & Lehmann, 2008).

Centrality analysis is another important method

we engaged, which is used to rank elements of a net-

work and hence it helps to determine which individ-

ual nodes of a network are more important than oth-

ers (Junker et al., 2006). For example, Fell & Wagner

(2000) showed that the most central metabolites in

metabolic networks are evolutionarily conserved, while

Jeong et al. (2001) showed that central proteins in

yeast protein-protein interaction networks are often

indispensable. However, it is clear that one specific

centrality measure is not sufficient when used alone,

thus several centrality measures have to be consid-

ered for biological network analysis.

MATERIALS AND METHODS

Human Metabolic Network Core

High-quality human metabolic networks have attract-

ed much attention recently, as they would be valuable

for understanding the relationship between human

metabolism and diseases (Goh et al., 2007; Lee et al.,
2008; Ma & Goryanin, 2008). Currently, we have two

acquirable high-quality human metabolic network

models available: The Edinburgh human metabolic

network (Ma et al., 2007) and H. sapiens Recon 1

(Duarte et al., 2007). To reflect biologically meaning-

ful transformations, we used the Edinburgh human

metabolic network model (Ma et al., 2007) in this

work. All reactions in Ma et al. (2007) are edited bas-

ed on the following principles: 1) some obvious in-

consistencies (e.g., the inconsistencies in compound

names, the mistakes in reaction equations, etc.) were

corrected, 2) the reversibility of every reaction was

confirmed, 3) some small molecules and some meta-
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FIG. 1. Human metabolic network core topology structure, the vertices correspond to metabolites and the arcs correspond

to reactions. The picture was drawn using the Pajek program (Batagelj & Mrvar, 1998).



bolites which are typical for transferring electrons

(ATP, ADP, NADH, H2O, etc.) were excluded. Then,

all of the metabolic reactions involved in the model

are represented by the so-called metabolite graph, i.e.

the vertices are metabolites and the arcs are reac-

tions. For example, after excluding ATP and ADP,

from the reaction ATP+D-glucose=ADP+D-glu-

cose 6-phosphate only the vertices D-glucose and D-

glucose 6-phosphate were left, connected with the arc

D-glucose → D-glucose 6-phosphate. For encoding

the reactions and the compound names we used the

codes of Ma’s database (Ma et al., 2007). Most, but

not all, reactions in Ma follow the codes provided in

the KEGG LIGAND database (http://www.genome.jp/

ligand/). For instance, Acetyl-CoA is represented by

the code C00024. We then extracted the human me-

tabolic network core. It contains 256 vertices and 648

arcs. The topology of the human metabolic network

core is shown in Figure 1.

Modularity Measures

The definition of functional modules in biological

networks is similar in principle to the definition of

communities in social networks. A functional module

is a set of nodes with dense node-node links within

the module but with sparser links between different

modules (Newman, 2006). An example network, which

could be decomposed to three modules, is depicted in

Figure 2. 

An important parameter related to the detection

of modules is modularity. For any presumptive parti-

tion of the network nodes, into modules, the partition

modularity M is defined as (Guimerà et al., 2004):

(1)

where r is the number of modules, ls is the number of

links between nodes in module s, ds is the sum of the

degrees of the nodes in module s, and L is the total

number of links in the entire network. For the identi-

fication of the best partition of the nodes into mod-

ules, we engaged simulated annealing algorithm. He-

re, simulated annealing is a stochastic optimization

technique that tries to find the optimal partition of

nodes into modules by maximizing the network mod-

ularity (Guimerà & Amaral, 2005), using a cost func-

tion of the form C=–M, where M is the modularity

defined in equation (1). Simulated annealing could

find ‘low cost’ configurations without getting trapped

in ‘high cost’ local minima. 

Starting from an initial configuration, the method

produces some random updates at each simulation

step by translocation of a number of nodes from one

module to another. At each step some of the random

updates are accepted with probability:

(2)

where C
2 and C1 are the cost after the update and be-

fore the update respectively, while T is the computa-

tional temperature. Generally, when T is high, the

system can explore high cost, and when T is low, the

system only explores low cost. For finding the low

cost, T is slowly decreasing from a high initial value.

Specifically, at each temperature T there would be ni=
fS2 individual node movements and nc=fS collective

node movements from one module to another, where

S is the number of nodes in the network, and f is iter-

ation factor with the recommended range of 0.1 to 1.

At each simulation step, the system would be cooled

down to T1=cT, where c is the cooling factor. 

Centrality Measures

Centrality measure methods are used to rank ele-

ments of a network and hence to determine which in-

dividual nodes of a network are more important than

others. Generally speaking, centrality is a function

that assigns a numerical value C(v) to each vertex of

a network, and there are many different measures for

computing such a centrality (Junker et al., 2006). De-

gree centrality calculates the number of connections

of each vertex in the network, and thus is used to

p =
1

exp(-               )

if  C2 ≤C1

if  C2 ≥C1
C2-C1 

T

M    Σ      (    )
s=1

r ls
L

ds
2L

2
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FIG. 2. A paradigm network with three modules.



identify the hub metabolites (Fig. 3). Betweenness

centrality calculates the number of shortest pathways

going through the vertices, while closeness centrality

considers the vertices in the core and periphery part

of the network. The centrality measures used in this

study are according to Junker et al. (2006) and are

summarized in Table 1.

RESULTS AND DISCUSSION

General Network Property of Human Metabolic Net-
work Core

Firstly, we checked whether the human metabolic

network core could be characterized as a “scale-free”,

“small-world” network. We firstly investigated the in-

degree (the number of directed links that point to the

node) distributions, out-degree (the number of di-

rected links that start at the node) distributions and

total-degree (the number of total links) distributions

of human metabolic network core. The results (Figs

4, 5 and 6) reaffirm that all of these degree distribu-

tions (log-log) approximately follow power law, and

suggest that the network is “scale-free”. We then

computed the average path length and the network

diameter, which is defined as the path length of the

longest pathway among all of the shortest pathways.

The average path length is 10.54 steps and network

diameter is 46 steps for the human metabolic network

core, which is similar to other eukaryotes studied by

Ma & Zeng (2003b) (see Table 2). This result indi-
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Rank Vertices Numerical Value

1 4 5

2 1 3

3 2 2

4 3 2

5 5 1

6 6 1

FIG. 3. The degree centrality measure in a paradigm network (adopted from exercise in Koschützki, 2008). Degree central-

ity measure ranks vertices in a network by calculating the number of connections of each vertex. E.g., for vertex 4, there are

5 links, so the numerical value for it is 5.

TABLE 1. Definitions for the centrality measures used in this study. d(v) denotes the degree of the vertex v, dist(v, w) denotes

the length of a shortest path between the vertices v and w, Ûst(v) denotes the number of shortest path from s to t that use the

vertex v, ‰st(v) = Ûst(v)/Ûst, where Ûst denotes the number of shortest paths from s to t, A denotes the adjacency matrix of the

graph and | the unit vector

Name Definition

Degree Cdeg(v) = d(v)

Eccentricity Cecc(v) = 1/(maxw∈ Vdist(v, w))

Closeness Cclo(v) = 1/(∑w∈ Vdist(v, w))

Radiality Crad(v) = ∑Δw∈ V(ΔG+1-dist(v,w))/(n-1)

Centroid Value Ccen(v)= minw∈ V\{v}{f(v,w)}

Shortest Path Betweenness Cspb(v) = ∑S≠ v∈ V∑t≠ v∈ V‰st(v)

Katz Status Ckatz = ∑ak(AT)k |

Eigenvector ÏCeiv = ACeiv

PageRank Cpr = dPCpr + (1-d)|

HITS-Hubs Chubs = ACauths
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FIG. 4. Log-log plot of the in-degree distributions for hu-

man metabolic network core.
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FIG. 5. Log-log plot of the out-degree distributions for hu-

man metabolic network core.
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FIG. 6. Log-log plot of the total degree distributions for hu-

man metabolic network core.

TABLE 2. Average path length (AL) and diameter (D) of

some eukaryotes

Organisms Abbreviation AL D

Arabidopsis thaliana ath 7.33 21

Caenorhabditis elegans cel 10.87 49

Drosophila melanogaster dme 9.41 24

Homo sapiens hsa 11.33 46

Mus musculus mmu 7.34 23

Rattus norvegicus rno 10.99 38

Saccharomyces cerevisiae sce 9.71 31

TABLE 3. Decomposed results of human metabolic network core based on simulated annealing algorithm

Module Nodes Total links Within links Between links

1 28 55 38 17

2 15 27 20 7

3 37 47 44 3

4 17 27 22 5

5 10 15 12 3

6 46 77 63 14

7 31 53 43 10

8 29 42 38 4

9 12 18 12 6

10 31 54 45 9

Modularity=0.775701



cates that the human metabolic network core is a

“small-world” network.

Modules of Human Metabolic Network Core

The best partition of the human metabolic network

core into modules (Fig. 7) is one with 10 modules.

For each module, we give the number of metabolites

(i.e., the nodes), total links (i.e., all links in the whole

network), within-module links (i.e., links within the

partition) and between-module links (i.e., links be-

tween the partitions). The modularity of the partition

is 0.775701. The decomposed result is also reaffirmed

by KEGG metabolic pathways, i.e. most modules are

mainly corresponding to one or two KEGG pathways

(Table 4). For instance, 19 out of 20 within links in

module 2 are corresponding to purine metabolism

and 41 out of 44 within links in module 3 are corre-

sponding to fatty acid biosynthesis. Of the 45 within

links in module 10, 28 correspond to pyrimidine and

12 to purine metabolism. Thus, it is clear that the
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FIG. 7. Modules in human metabolic network core. Each module (indicated by different colors and numbers) is signed by its

module No. (the same numbers are also used in Tables 3 and 4). The picture was drawn using the Pajek program (Batagelj

& Mrvar, 1998). 

TABLE 4. The decomposed results of human metabolic network core is reaffirmed by compared to KEGG metabolic path-

ways
______ represents that the corresponding module includes several pathways and it is difficult to assign it one or two simple

pathways

Module Pathways in KEGG

1 ______

2 Purine metabolism

3 Fatty acid biosynthesis

4 Galactose metabolism, Glycolysis /Gluconeogenesis

5 Aminosugars metabolism

6 Fatty acid elongation in mitochondria

7 PPP, Glycolysis /Gluconeogenesis, Fructose and mannose metabolism

8 Glycerolipid metabolism, Glycerophospholipid metabolism

9 ______

10 Pyrimidine metabolism, Purine metabolism



modules detected by the simulated annealing algo-

rithm are of functional significance for metabolism.

The modular structure of the network that encapsu-

lates simple functions in each module is a basic me-

chanism than enable biological robustness (Kitano,

2004; Stelling et al., 2004; Ding et al., 2008). The rea-

son is that any damage located in one module is pre-

vented from spreading throughout the entire net-

work. That is, the modular structure reduces the risk

of a catastrophic failure. 

Centers of Human Metabolic Network Core

The multi-centrality measures of human metabolic

network core were computed. The central metaboli-

tes were different according to different centrality

measures. So we first ranked the top 20 central meta-

bolites for every centrality measure (Table 5). The

ranks depended on the centrality measure used since

different measures focus on different aspects of cen-

trality. To select the 10 top central metabolites we on-

ly considered those included in the top 20 list of at
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TABLE 5. The top 20 central metabolites corresponding to different centrality measures. Degree, Vdeg; Eccentricity, Vecc;

Closeness, Vclo; Radiality, Vrad; Centroid Value, Vcen; Shortest Path Betweenness, Vspb; Katz Status, Vkatz; Eigenvector, Veig;

PageRank, Vpr; VHITS-Hubs, Vhubs

Rank Vdeg Vecc Vclo Vrad Vcen Vspb Vkatz Veig Vpr Vhubs

1 24 65 22 22 22 24 24 24 24 10

2 10 3232 65 65 25 10 10 10 10 22

3 46 36 26 26 64 22 46 22 3968 158

4 5345 22 41 41 26 118 5345 158 330 24

5 22 64 25 25 111 36 118 33 5345 5265

6 118 168 64 64 93 197 26 26 118 5263

7 25 116 36 36 5378 26 36 91 4618 5269

8 26 577 168 168 41 236 91 5269 361 5267

9 36 258 91 91 5345 8 25 5263 6326 5261

10 3968 197 10 10 49 631 22 5267 631 5259

11 91 1005 49 49 668 74 8 5261 4317 33

12 41 10 149 149 36 46 5382 5259 117 222

13 5382 26 1005 1005 577 5259 3968 5265 91 579

14 4317 41 311 311 24 5258 33 36 197 332

15 117 186 186 186 118 25 231 579 242 1136

16 1209 256 256 256 10 91 117 311 46 5993

17 144 25 158 158 231 5272 279 136 106 26

18 8 49 258 258 279 111 144 5274 877 25

19 361 29 5379 5379 258 33 5378 5270 3372 36

20 352 158 2630 2630 168 154 85 1832 5747 49

Note: The metabolite names for each ID used in the Table: 8, ADP; 10, CoA; 22, Pyruvate; 24, Acetyl-CoA; 25, L-Glutamate;

26, 2-Oxoglutarate; 29, UDPglucose; 33, Acetate; 36, Oxaloacetate; 41, L-Alanine; 46, RNA; 49, L-Aspartate; 64, L-Glutami-

ne; 65, L-Serine; 74, Phosphoenolpyruvate; 85, D-Fructose 6-phosphate; 91, Succinyl-CoA; 93, sn-Glycerol 3-phosphate; 106,

Uracil; 111, Glycerone phosphate; 116, Glycerol; 117, D-Ribose 5-phosphate; 118, (2R)-2-Hydroxy-3-(phosphonooxy)-pro-

panal; 136, Butanoyl-CoA; 144, GMP; 149, (S)-Malate; 154, Palmitoyl-CoA; 158, Citrate; 168, Hydroxypyruvate; 186, (S)-La-

ctate; 197, 3-Phospho-D-glycerate; 222, 3-Oxopropanoate; 231, D-Xylulose 5-phosphate; 236, 3-Phospho-D-glyceroyl phos-

phate; 242, Guanine; 256, (R)-Lactate; 258, D-Glycerate; 279, D-Erythrose 4-phosphate; 311, Isocitrate; 330, Deoxyguanosi-

ne; 332, Acetoacetyl-CoA; 352, D-Glucosamine 6-phosphate; 361, dGDP; 577, D-Glyceraldehyde; 579, Dihydrolipoamide;

631, 2-Phospho-D-glycerate; 668, alpha-D-Glucose 6-phosphate; 877, Crotonoyl-CoA; 1005, O-Phospho-L-serine; 1136, S-

Acetyldihydrolipoamide 1209, Malonyl-[acyl-carrier protein]; 1832, Lauroyl-CoA; 2630, 2-Hydroxyglutarate; 3232, 3-Phospho-

nooxypyruvate; 3372, Acylglycerone phosphate; 3968, 1-Alkyl-sn-glycero-3-phosphate; 4317, 1-Alkyl-sn-glycerol-3-phospho-

choline; 4618, (3R)-3-Hydroxybutanoyl-[acyl-carrier protein]; 5258, (S)-3-Hydroxyhexadecanoyl-CoA; 5259, 3-Oxopalmitoyl-

CoA; 5261, 3-Oxotetradecanoyl-CoA; 5263, 3-Oxododecanoyl-CoA; 5265, 3-Oxodecanoyl-CoA; 5267, 3-Oxooctanoyl-CoA;

5269, 3-Oxohexanoyl-CoA; 5270, Hexanoyl-CoA; 5272, trans-Hexadec-2-enoyl-CoA; 5274, Decanoyl-CoA; 5345, beta-D-Fru-

ctose 6-phosphate; 5378, beta-D-Fructose 1,6-bisphosphate; 5379, Oxalosuccinate; 5382, Sedoheptulose 7-phosphate; 5747,

(R)-3-Hydroxyhexanoyl-[acp]; 5993, Acetyl adenylate; 6326, (2S)-2-{[1-(R)-Carboxyethyl]amino}pentanoate



least one centrality measure. The metabolites in this

latter set were eventually ranked according to the

number of different top 20 lists they were included

and the top ten among them are given in Table 6.

Among these top 10 central metabolites, CoA is an

ubiquitous molecule and PYR is an important inter-

mediate in the glycolysis pathway. AKG is the meta-

bolite linking TCA cycle with reductive carboxylate

cycle (CO2 fixation) and nitrogen metabolism. OAA

links pyruvate metabolism and TCA cycle. AcCoA

and SuCoA link glycolysis pathway with citric acid cy-

cle and fatty acid synthesis pathway. 2HPP is the me-

tabolite linking glycolysis pathway, pentose phosphate

pathway and carbon fixation. GLU, ALA and ASP

are three important amino acids. They are directly

produced in TCA cycle and could be converted to

many other useful amino acids. Furthermore, from

the therapeutic viewpoint, these metabolites are all

good drug targets and help in therapy design, because

they are involved in many disease-related metabolic

reactions. For instance, the top central metabolite,

CoA, participates in 15 disease-related reactions:

R00234 (Acetyl-CoA+Peptide<=>CoA+ Nalpha-

Acetylpeptide), R00351 (Citrate+CoA<=> Acetyl-

CoA + H
2O + Oxaloacetate), R00352 (ATP + Ci-

trate+CoA<=>ADP+Orthophosphate+Acetyl-

CoA+Oxaloacetate), R00395 (Acyl-CoA+Glycine

<=>CoA+N-Acylglycine), R01177 (Acetyl-CoA+

Butanoyl-CoA <=> CoA + 3-Oxohexanoyl-CoA),

R02387 (Acetyl-CoA+Aniline<=>CoA+N-Ace-

tylarylamine), R03552 (Acetyl-CoA+Histone<=>

CoA+Acetylhistone), R03778 (Octanoyl-CoA+A-

cetyl-CoA<=>CoA+3-Oxodecanoyl-CoA), R03779

(Octanoyl-CoA+L-Carnitine<=>CoA+L-Octano-

ylcarnitine), R03858 (Lauroyl-CoA + Acetyl-CoA

<=>CoA+3-Oxotetradecanoyl-CoA), R03991 (Te-

tradecanoyl-CoA+Acetyl-CoA<=>CoA+3-Oxo-

palmitoyl-CoA), R03992 (Tetradecanoyl-CoA+Gly-

cylpeptide<=>CoA+N-Tetradecanoylglycylpepti-

de), R04742 (Decanoyl-CoA + Acetyl-CoA <=>

CoA+3-Oxododecanoyl-CoA), R04747 (Hexanoyl-

CoA+Acetyl-CoA<=>CoA+3-Oxooctanoyl-CoA)

and RE0361 (CoA+“a”-ketoglutarate+NAD+<=>

CO2+NADH+succinyl-CoA).

In conclusion, with the accumulation of knowl-

edge in ‘omics’ and systems biology, high-quality me-

tabolic networks are now available for structural and

functional analysis (Reed et al., 2006). Since they

were published (Duarte et al., 2007; Ma et al., 2007),

high-quality human metabolic networks have attract-

ed much attention in recent years. It is suggested that

these studies could greatly help for understanding

human metabolism, diseases and for proposing new

hypotheses (Goh et al., 2007; Lee et al., 2008; Ma &

Goryanin, 2008).

This study provides an attempt to explore the fun-

damental organizational principles that underlie hu-

man metabolic network core. Our study has been ini-

tiated by extracting human metabolic network core

from a high-quality human metabolic network. The

obtained metabolic network core is represented by a

metabolite graph. We analyzed its general global stru-

ctural properties and validated its “scale-free” and

“small-world” characters. Finally, the structure of the

metabolic network core is explained and discussed

based on modularity and centrality analysis, with their

biological and pharmacological significance.
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